27 research outputs found

    Recognition of Daily Gestures with Wearable Inertial Rings and Bracelets

    Get PDF
    Recognition of activities of daily living plays an important role in monitoring elderly people and helping caregivers in controlling and detecting changes in daily behaviors. Thanks to the miniaturization and low cost of Microelectromechanical systems (MEMs), in particular of Inertial Measurement Units, in recent years body-worn activity recognition has gained popularity. In this context, the proposed work aims to recognize nine different gestures involved in daily activities using hand and wrist wearable sensors. Additionally, the analysis was carried out also considering different combinations of wearable sensors, in order to find the best combination in terms of unobtrusiveness and recognition accuracy. In order to achieve the proposed goals, an extensive experimentation was performed in a realistic environment. Twenty users were asked to perform the selected gestures and then the data were off-line analyzed to extract significant features. In order to corroborate the analysis, the classification problem was treated using two different and commonly used supervised machine learning techniques, namely Decision Tree and Support Vector Machine, analyzing both personal model and Leave-One-Subject-Out cross validation. The results obtained from this analysis show that the proposed system is able to recognize the proposed gestures with an accuracy of 89.01% in the Leave-One-Subject-Out cross validation and are therefore promising for further investigation in real life scenarios

    Upper limb motor pre-clinical assessment in Parkinson's disease using machine learning

    Get PDF
    Abstract Introduction Parkinson's disease (PD) is a common neurodegenerative disorder characterized by disabling motor and non-motor symptoms. For example, idiopathic hyposmia (IH), which is a reduced olfactory sensitivity, is typical in >95% of PD patients and is a preclinical marker for the pathology. Methods In this work, a wearable inertial device, named SensHand V1, was used to acquire motion data from the upper limbs during the performance of six tasks selected by MDS-UPDRS III. Three groups of people were enrolled, including 30 healthy subjects, 30 IH people, and 30 PD patients. Forty-eight parameters per side were computed by spatiotemporal and frequency data analysis. A feature array was selected as the most significant to discriminate among the different classes both in two-group and three-group classification. Multiple analyses were performed comparing three supervised learning algorithms, Support Vector Machine (SVM), Random Forest (RF), and Naive Bayes, on three different datasets. Results Excellent results were obtained for healthy vs. patients classification (F-Measure 0.95 for RF and 0.97 for SVM), and good results were achieved by including subjects with hyposmia as a separate group (0.79 accuracy, 0.80 precision with RF) within a three-group classification. Overall, RF classifiers were the best approach for this application. Conclusion The system is suitable to support an objective PD diagnosis. Further, combining motion analysis with a validated olfactory screening test, a two-step non-invasive, low-cost procedure can be defined to appropriately analyze people at risk for PD development, helping clinicians to identify also subtle changes in motor performance that characterize PD onset

    Wearable sensors for human–robot walking together

    Get PDF
    Thanks to recent technological improvements that enable novel applications beyond the industrial context, there is growing interest in the use of robots in everyday life situations. To improve the acceptability of personal service robots, they should seamlessly interact with the users, understand their social signals and cues and respond appropriately. In this context, a few proposals were presented to make robots and humans navigate together naturally without explicit user control, but no final solution has been achieved yet. To make an advance toward this end, this paper proposes the use of wearable Inertial Measurement Units to improve the interaction between human and robot while walking together without physical links and with no restriction on the relative position between the human and the robot. We built a prototype system, experimented with 19 human participants in two different tasks, to provide real-time evaluation of gait parameters for a mobile robot moving together with a human, and studied the feasibility and the perceived usability by the participants. The results show the feasibility of the system, which obtained positive feedback from the users, giving valuable information for the development of a natural interaction system where the robot perceives human movements by means of wearable sensors

    Optimised method for the analysis of phenolic compounds from caper (Capparis spinosa L.) berries and monitoring of their changes during fermentation

    Get PDF
    In this work, an ad hoc method to identify and quantify polyphenols from caper berries was developed on high-performance liquid chromatography/electrospray ionisation source/mass spectrometry (HPLC-ESI-MS). The method was applied during fermentation carried out with Lactobacillus pentosus OM13 (Trial S) and without starter (Trial C). A total of five polyphenols were identified. All samples contained high concentrations of rutin. Epicatechin was found in untreated fruits, on the contrary quercetin was detected during fermentation. Trial S was characterised by a more rapid acidification and lower levels of spoilage microorganisms than Trial C. L. pentosus dominated among the microbial community of both trials and the highest biodiversity, in terms of strains, was displayed by Trial C. Aureobasidium pullulans was the only yeast species found. The analytical method proposed allowed a high polyphenolic compound recovery from untreated and processed caper berries in short time. The starter culture reduced the bitter taste of the final product

    Industrial application of selected lactic acid bacteria isolated from local semolinas for typical sourdough bread production

    Get PDF
    Four obligate heterofermentative lactic acid bacteria (LAB) strains (Weissella cibaria PON10030 and PON10032 and Leuconostoc citreum PON 10079 and PON10080) were tested as single strain starters, mono-species dual strain starters, and multiple strain starter for the preparation and propagation of sourdoughs for the production of a typical bread at industrial level. The kinetics of pH and TTA during the daily sourdough refreshments indicated a correct acidification process for all trials. The concentration of lactic and acetic acid increased consistently during fermentation. The resulting molar ratios between these two organic acids in the experimental trials were lower than those observed in the control trial. The microbiological investigation showed levels of approximately 109 CFU/mL in almost all sourdoughs and the comparison of the genetic polymorphisms of the dominating LAB with those of the pure cultures evidenced the persistence of the added strains over time. The resulting breads were evaluated for several quality parameters. The breads with the greatest height were obtained with the quadruple combination of leuconostocs and weissellas. The highest softness was registered for the breads obtained from fermentations performed by W. cibaria PON10032 alone and in combination. The different inocula influenced also the color, the void fraction, the cell density and the mean cell area of the breads. Different levels of acids, alcohols, aldehydes, esters, hydrocarbons, ketones, terpenes, furans and phenol were emitted by the breads. The sensory tests indicated the breads from the sourdoughs fermented with the seven LAB inocula as sweeter and less acidic than control breads and the breads from the trials with the highest complexity of LAB inoculums were those more appreciated by tasters. A multivariate approach found strong differences among the trials. In particular, control breads and the breads obtained with different starter LAB were quite distant and a more strict relation was found among the productions carried out by W. cibaria strains. This study proved the suitability of the selected strains of L. citreum and W. cibaria for industrial-scale level applications in sourdough bread production

    Effects of irrigation treatments on the quality of table olives produced with the Greek-style process

    Get PDF
    The irrigation of olive orchards is commonly applied to produce table olives with optimal size. No data have been published on the microbiological quality of drupes from irrigated olive groves during fermentation. The trials T100 and T50 (receiving a water amount equivalent to 100 % and 50 % of the required, respectively) and the control T0 (rainfed trial) were monitored during two consecutive years. Results showed significant increase of equatorial diameter and flesh:pit ratio of irrigated drupes. The decrease of pH and the numbers of lactic acid bacteria (LAB) registered for the irrigated trials during the fermentation were more consistent than those displayed by control T0. Lactobacillus pentosus, Lactobacillus plantarum, Lactobacillus coryniformis and Pediococcus pentosaceous for LAB, and Candida boidinii, Candida diddensiae and Wickerhamomyces anomalus for yeasts were isolated at highest concentrations. The global sensory acceptance was better for irrigated trials rather than control T0. The statistical multivariate analysis showed that the effect of irrigation was independent from the seasonal variability and it clearly distinguished the T100 and T50 trials from rainfed control. The irrigation improve significantly the quality of table olives. Interestingly, all explorative multivariate analyses showed low dissimilarity between irrigated trials; thus the thesis T50 represents an effective approach to save water in olive orchards without compromising the quality of table olives

    Evaluation of different conditions to enhance the performances of Lactobacillus pentosus OM13 during industrial production of Spanish-style table olives

    Get PDF
    The main objective was to set up a methodology to improve the high volume production of green table olives, cv. Nocellara del Belice. Lactobaccillus pentosus OM13 was applied during three different industrial processes of table olives as follows: trial one (IOP1) was subjected to an addition of lactic acid until a brine level of pH 7.0 was reached; trial two (IOP2) subjected to same addition of lactic acid as in trial one plus nutrient adjuvant; and trial three (IOP3) subjected to same addition of lactic acid as in trial one, but with the strain L. pentosus OM13 acclimatized in brine for 12 h before inoculation. These trials were compared against two untreated controls (spontaneously fermented and addition of L. pentosus OM13 only). Within the third day of fermentation, the pH of the brines decreased significantly, reaching pH 4.85 for trial three, pH 5.15 for trial two, and pH 5.92 for trial one. The pH of both controls decreased more slowly, and had values below pH 5.0 only after the fifteenth day of fermentation (control one) and the sixty-fifth day of fermtation (control two). Trial three reached the highest lactic acid bacteria (LAB) concentration on the third day of fermentation. After six days of fermentation, all trials showed similar values of LAB counts that were significantly higher compared to control number one. The result from genotypic identification showed that L. pentosus OM13 was the most frequently isolated in the inoculated trials. Lactobacillus plantarum, Lactobacillus coryniformis and Pediococcus pentosaceous were also detected at very low concentrations. Homoguaiacol, 2-butanol, 4-ethylphenol, phenylethyl alcohol and 4-ethylphenol were the volatile organic compounds detected at the highest levels in all experimental trials. Trial three showed a higher concentration of squalene that was not detected in other trials. The highest sensory scores of green olive aroma and overall satisfaction were found for all experimental olives, especially for those of trial one and trial two, that differed significantly from the untreated controls. This study provides evidence that the addition of lactic acid, nutrient adjuvants and, most importantly, the acclimatization of LAB cells significantly shortens the acidification process of olive brine, and improves safety and sensory quality. Shorter acidification processes result in a more rapid transformation of table olives, with reduced commodity loss and lower costs of production compared to conventional manufacturing protocols

    Covid-19 And Rheumatic Autoimmune Systemic Diseases: Role of Pre-Existing Lung Involvement and Ongoing Treatments

    Get PDF
    The Covid-19 pandemic may have a deleterious impact on patients with autoimmune systemic diseases (ASD) due to their deep immune-system alterations

    COVID-19 in rheumatic diseases in Italy: first results from the Italian registry of the Italian Society for Rheumatology (CONTROL-19)

    Get PDF
    OBJECTIVES: Italy was one of the first countries significantly affected by the coronavirus disease 2019 (COVID-19) epidemic. The Italian Society for Rheumatology promptly launched a retrospective and anonymised data collection to monitor COVID-19 in patients with rheumatic and musculoskeletal diseases (RMDs), the CONTROL-19 surveillance database, which is part of the COVID-19 Global Rheumatology Alliance. METHODS: CONTROL-19 includes patients with RMDs and proven severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) updated until May 3rd 2020. In this analysis, only molecular diagnoses were included. The data collection covered demographic data, medical history (general and RMD-related), treatments and COVID-19 related features, treatments, and outcome. In this paper, we report the first descriptive data from the CONTROL-19 registry. RESULTS: The population of the first 232 patients (36% males) consisted mainly of elderly patients (mean age 62.2 years), who used corticosteroids (51.7%), and suffered from multi-morbidity (median comorbidities 2). Rheumatoid arthritis was the most frequent disease (34.1%), followed by spondyloarthritis (26.3%), connective tissue disease (21.1%) and vasculitis (11.2%). Most cases had an active disease (69.4%). Clinical presentation of COVID-19 was typical, with systemic symptoms (fever and asthenia) and respiratory symptoms. The overall outcome was severe, with high frequencies of hospitalisation (69.8%), respiratory support oxygen (55.7%), non-invasive ventilation (20.9%) or mechanical ventilation (7.5%), and 19% of deaths. Male patients typically manifested a worse prognosis. Immunomodulatory treatments were not significantly associated with an increased risk of intensive care unit admission/mechanical ventilation/death. CONCLUSIONS: Although the report mainly includes the most severe cases, its temporal and spatial trend supports the validity of the national surveillance system. More complete data are being acquired in order to both test the hypothesis that RMD patients may have a different outcome from that of the general population and determine the safety of immunomodulatory treatments
    corecore